llamactl

Build and Release Go Tests WebUI Tests

Management server and proxy for multiple llama.cpp instances with OpenAI-compatible API routing.

Why llamactl?

๐Ÿš€ Multiple Model Serving: Run different models simultaneously (7B for speed, 70B for quality)
๐Ÿ”— OpenAI API Compatible: Drop-in replacement - route requests by model name
๐ŸŒ Web Dashboard: Modern React UI for visual management (unlike CLI-only tools)
๐Ÿ” API Key Authentication: Separate keys for management vs inference access
๐Ÿ“Š Instance Monitoring: Health checks, auto-restart, log management
โณ Idle Timeout Management: Automatically stop idle instances after a configurable period
๐Ÿ’ก On-Demand Instance Start: Automatically launch instances upon receiving OpenAI-compatible API requests
๐Ÿ’พ State Persistence: Ensure instances remain intact across server restarts

Dashboard Screenshot

Choose llamactl if: You need authentication, health monitoring, auto-restart, and centralized management of multiple llama-server instances
Choose Ollama if: You want the simplest setup with strong community ecosystem and third-party integrations
Choose LM Studio if: You prefer a polished desktop GUI experience with easy model management

Quick Start

# 1. Install llama-server (one-time setup)
# See: https://github.com/ggml-org/llama.cpp#quick-start

# 2. Download and run llamactl
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/

# 3. Start the server
llamactl
# Access dashboard at http://localhost:8080

Usage

Create and manage instances via web dashboard:

  1. Open http://localhost:8080
  2. Click โ€œCreate Instanceโ€
  3. Set model path and GPU layers
  4. Start or stop the instance

Or use the REST API:

# Create instance
curl -X POST localhost:8080/api/v1/instances/my-7b-model \
  -H "Authorization: Bearer your-key" \
  -d '{"model": "/path/to/model.gguf", "gpu_layers": 32}'

# Use with OpenAI SDK
curl -X POST localhost:8080/v1/chat/completions \
  -H "Authorization: Bearer your-key" \
  -d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}'

Installation

# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/

# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest

# Windows - Download from releases page

Option 2: Build from Source

Requires Go 1.24+ and Node.js 22+

git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server

Prerequisites

You need llama-server from llama.cpp installed:

# Quick install methods:
# Homebrew (macOS)
brew install llama.cpp

# Or build from source - see llama.cpp docs

Configuration

llamactl works out of the box with sensible defaults.

server:
  host: "0.0.0.0"                # Server host to bind to
  port: 8080                     # Server port to bind to
  allowed_origins: ["*"]         # Allowed CORS origins (default: all)
  enable_swagger: false          # Enable Swagger UI for API docs

instances:
  port_range: [8000, 9000]       # Port range for instances
  data_dir: ~/.local/share/llamactl         # Data directory (platform-specific, see below)
  configs_dir: ~/.local/share/llamactl/instances  # Instance configs directory
  logs_dir: ~/.local/share/llamactl/logs    # Logs directory
  auto_create_dirs: true         # Auto-create data/config/logs dirs if missing
  max_instances: -1              # Max instances (-1 = unlimited)
  llama_executable: llama-server # Path to llama-server executable
  default_auto_restart: true     # Auto-restart new instances by default
  default_max_restarts: 3        # Max restarts for new instances
  default_restart_delay: 5       # Restart delay (seconds) for new instances
  default_on_demand_start: true  # Default on-demand start setting
  on_demand_start_timeout: 120   # Default on-demand start timeout in seconds
  timeout_check_interval: 5      # Idle instance timeout check in minutes


auth:
  require_inference_auth: true   # Require auth for inference endpoints
  inference_keys: []             # Keys for inference endpoints
  require_management_auth: true  # Require auth for management endpoints
  management_keys: []            # Keys for management endpoints
Full Configuration Guide llamactl can be configured via configuration files or environment variables. Configuration is loaded in the following order of precedence: ``` Defaults < Configuration file < Environment variables ``` ### Configuration Files #### Configuration File Locations Configuration files are searched in the following locations (in order of precedence): **Linux/macOS:** - `./llamactl.yaml` or `./config.yaml` (current directory) - `$HOME/.config/llamactl/config.yaml` - `/etc/llamactl/config.yaml` **Windows:** - `./llamactl.yaml` or `./config.yaml` (current directory) - `%APPDATA%\llamactl\config.yaml` - `%USERPROFILE%\llamactl\config.yaml` - `%PROGRAMDATA%\llamactl\config.yaml` You can specify the path to config file with `LLAMACTL_CONFIG_PATH` environment variable. ### Configuration Options #### Server Configuration ```yaml server: host: "0.0.0.0" # Server host to bind to (default: "0.0.0.0") port: 8080 # Server port to bind to (default: 8080) allowed_origins: ["*"] # CORS allowed origins (default: ["*"]) enable_swagger: false # Enable Swagger UI (default: false) ``` **Environment Variables:** - `LLAMACTL_HOST` - Server host - `LLAMACTL_PORT` - Server port - `LLAMACTL_ALLOWED_ORIGINS` - Comma-separated CORS origins - `LLAMACTL_ENABLE_SWAGGER` - Enable Swagger UI (true/false) #### Instance Configuration ```yaml instances: port_range: [8000, 9000] # Port range for instances (default: [8000, 9000]) data_dir: "~/.local/share/llamactl" # Directory for all llamactl data (default varies by OS) configs_dir: "~/.local/share/llamactl/instances" # Directory for instance configs (default: data_dir/instances) logs_dir: "~/.local/share/llamactl/logs" # Directory for instance logs (default: data_dir/logs) auto_create_dirs: true # Automatically create data/config/logs directories (default: true) max_instances: -1 # Maximum instances (-1 = unlimited) llama_executable: "llama-server" # Path to llama-server executable default_auto_restart: true # Default auto-restart setting default_max_restarts: 3 # Default maximum restart attempts default_restart_delay: 5 # Default restart delay in seconds default_on_demand_start: true # Default on-demand start setting on_demand_start_timeout: 120 # Default on-demand start timeout in seconds timeout_check_interval: 5 # Default instance timeout check interval in minutes ``` **Environment Variables:** - `LLAMACTL_INSTANCE_PORT_RANGE` - Port range (format: "8000-9000" or "8000,9000") - `LLAMACTL_DATA_DIRECTORY` - Data directory path - `LLAMACTL_INSTANCES_DIR` - Instance configs directory path - `LLAMACTL_LOGS_DIR` - Log directory path - `LLAMACTL_AUTO_CREATE_DATA_DIR` - Auto-create data/config/logs directories (true/false) - `LLAMACTL_MAX_INSTANCES` - Maximum number of instances - `LLAMACTL_LLAMA_EXECUTABLE` - Path to llama-server executable - `LLAMACTL_DEFAULT_AUTO_RESTART` - Default auto-restart setting (true/false) - `LLAMACTL_DEFAULT_MAX_RESTARTS` - Default maximum restarts - `LLAMACTL_DEFAULT_RESTART_DELAY` - Default restart delay in seconds - `LLAMACTL_DEFAULT_ON_DEMAND_START` - Default on-demand start setting (true/false) - `LLAMACTL_ON_DEMAND_START_TIMEOUT` - Default on-demand start timeout in seconds - `LLAMACTL_TIMEOUT_CHECK_INTERVAL` - Default instance timeout check interval in minutes #### Authentication Configuration ```yaml auth: require_inference_auth: true # Require API key for OpenAI endpoints (default: true) inference_keys: [] # List of valid inference API keys require_management_auth: true # Require API key for management endpoints (default: true) management_keys: [] # List of valid management API keys ``` **Environment Variables:** - `LLAMACTL_REQUIRE_INFERENCE_AUTH` - Require auth for OpenAI endpoints (true/false) - `LLAMACTL_INFERENCE_KEYS` - Comma-separated inference API keys - `LLAMACTL_REQUIRE_MANAGEMENT_AUTH` - Require auth for management endpoints (true/false) - `LLAMACTL_MANAGEMENT_KEYS` - Comma-separated management API keys

License

MIT License - see LICENSE file.