Skip to content

Managing Instances

Learn how to effectively manage your llama.cpp, MLX, and vLLM instances with Llamactl through both the Web UI and API.

Overview

Llamactl provides two ways to manage instances:

  • Web UI: Accessible at http://localhost:8080 with an intuitive dashboard
  • REST API: Programmatic access for automation and integration

Dashboard Screenshot

Authentication

Llamactl uses a Management API Key to authenticate requests to the management API (creating, starting, stopping instances). All curl examples below use <token> as a placeholder - replace this with your actual Management API Key.

By default, authentication is required. If you don't configure a management API key in your configuration file, llamactl will auto-generate one and print it to the terminal on startup. See the Configuration guide for details.

For Web UI access:
1. Navigate to the web UI
2. Enter your Management API Key
3. Bearer token is stored for the session

Theme Support

  • Switch between light and dark themes
  • Setting is remembered across sessions

Instance Cards

Each instance is displayed as a card showing:

  • Instance name
  • Health status badge (unknown, ready, error, failed)
  • Action buttons (start, stop, edit, logs, delete)

Create Instance

Via Web UI

Create Instance Screenshot

  1. Click the "Create Instance" button on the dashboard
  2. Optional: Click "Import" to load a previously exported configuration

Instance Settings:

  1. Enter a unique Instance Name (required)
  2. Select Node: Choose which node to deploy the instance to
  3. Configure Auto Restart settings:
    • Enable automatic restart on failure
    • Set max restarts and delay between attempts
  4. Configure basic instance options:
    • Idle Timeout: Minutes before stopping idle instance
    • On Demand Start: Start instance only when needed

Backend Configuration:

  1. Select Backend Type:
    • Llama Server: For GGUF models using llama-server
    • MLX LM: For MLX-optimized models (macOS only)
    • vLLM: For distributed serving and high-throughput inference
  2. Optional: Click "Parse Command" to import settings from an existing backend command
  3. Configure Execution Context:
    • Enable Docker: Run backend in Docker container
    • Command Override: Custom path to backend executable
    • Environment Variables: Custom environment variables

Auto-Assignment

Llamactl automatically assigns ports from the configured port range (default: 8000-9000) and generates API keys if authentication is enabled. You typically don't need to manually specify these values.

  1. Configure Basic Backend Options (varies by backend):
    • llama.cpp: Model path, threads, context size, GPU layers, etc.
    • MLX: Model identifier, temperature, max tokens, etc.
    • vLLM: Model identifier, tensor parallel size, GPU memory utilization, etc.
  2. Optional: Expand Advanced Backend Options for additional settings
  3. Optional: Add Extra Args as key-value pairs for custom command-line arguments
  4. Click "Create" to save the instance

Via API

# Create llama.cpp instance with local model file
curl -X POST http://localhost:8080/api/v1/instances/my-llama-instance \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <token>" \
  -d '{
    "backend_type": "llama_cpp",
    "backend_options": {
      "model": "/path/to/model.gguf",
      "threads": 8,
      "ctx_size": 4096,
      "gpu_layers": 32,
      "flash_attn": "on"
    },
    "auto_restart": true,
    "max_restarts": 3,
    "docker_enabled": false,
    "command_override": "/opt/llama-server-dev",
    "nodes": ["main"]
  }'

# Create vLLM instance with environment variables
curl -X POST http://localhost:8080/api/v1/instances/my-vllm-instance \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <token>" \
  -d '{
    "backend_type": "vllm",
    "backend_options": {
      "model": "microsoft/DialoGPT-medium",
      "tensor_parallel_size": 2,
      "gpu_memory_utilization": 0.9
    },
    "on_demand_start": true,
    "environment": {
      "CUDA_VISIBLE_DEVICES": "0,1"
    },
    "nodes": ["worker1", "worker2"]
  }'

# Create MLX instance (macOS only)
curl -X POST http://localhost:8080/api/v1/instances/my-mlx-instance \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <token>" \
  -d '{
    "backend_type": "mlx_lm",
    "backend_options": {
      "model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit",
      "temp": 0.7,
      "max_tokens": 2048
    },
    "nodes": ["main"]
  }'

Start Instance

Via Web UI
1. Click the "Start" button on an instance card
2. Watch the status change to "Unknown"
3. Monitor progress in the logs
4. Instance status changes to "Ready" when ready

Via API

curl -X POST http://localhost:8080/api/v1/instances/{name}/start \
  -H "Authorization: Bearer <token>"

Stop Instance

Via Web UI
1. Click the "Stop" button on an instance card
2. Instance gracefully shuts down

Via API

curl -X POST http://localhost:8080/api/v1/instances/{name}/stop \
  -H "Authorization: Bearer <token>"

Edit Instance

Via Web UI
1. Click the "Edit" button on an instance card
2. Modify settings in the configuration dialog
3. Changes require instance restart to take effect
4. Click "Update & Restart" to apply changes

Via API
Modify instance settings:

curl -X PUT http://localhost:8080/api/v1/instances/{name} \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer <token>" \
  -d '{
    "backend_options": {
      "threads": 8,
      "context_size": 4096
    }
  }'

Note

Configuration changes require restarting the instance to take effect.

Export Instance

Via Web UI
1. Click the "More actions" button (three dots) on an instance card
2. Click "Export" to download the instance configuration as a JSON file

View Logs

Via Web UI

  1. Click the "Logs" button on any instance card
  2. Real-time log viewer opens

Via API
Check instance status in real-time:

# Get instance logs
curl http://localhost:8080/api/v1/instances/{name}/logs \
  -H "Authorization: Bearer <token>"

Delete Instance

Via Web UI
1. Click the "Delete" button on an instance card
2. Only stopped instances can be deleted
3. Confirm deletion in the dialog

Via API

curl -X DELETE http://localhost:8080/api/v1/instances/{name} \
  -H "Authorization: Bearer <token>"

Instance Proxy

Llamactl proxies all requests to the underlying backend instances (llama-server, MLX, or vLLM).

# Proxy requests to the instance
curl http://localhost:8080/api/v1/instances/{name}/proxy/ \
  -H "Authorization: Bearer <token>"

All backends provide OpenAI-compatible endpoints. Check the respective documentation:
- llama-server docs
- MLX-LM docs
- vLLM docs

Instance Health

Via Web UI

  1. The health status badge is displayed on each instance card

Via API

Check the health status of your instances:

curl http://localhost:8080/api/v1/instances/{name}/proxy/health \
  -H "Authorization: Bearer <token>"